Abstract

The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1–3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon junction complex in mammals versus the cytoplasmic poly(A)-binding protein (PABP) in other eukaryotes. Here we present evidence for a unified model for NMD, in which PTC recognition in human cells is mediated by a competition between 3′ UTR–associated factors that stimulate or antagonize recruitment of the Upf complex to the terminating ribosome. We identify cytoplasmic PABP as a human NMD antagonizing factor, which inhibits the interaction between eRF3 and Upf1 in vitro and prevents NMD in cells when positioned in proximity to the termination codon. Surprisingly, only when an extended 3′ UTR places cytoplasmic PABP distally to the termination codon does a downstream exon junction complex enhance NMD, likely through increasing the affinity of Upf proteins for the 3′ UTR. Interestingly, while an artificial 3′ UTR of >420 nucleotides triggers NMD, a large subset of human mRNAs contain longer 3′ UTRs but evade NMD. We speculate that these have evolved to concentrate NMD-inhibiting factors, such as PABP, in spatial proximity of the termination codon.

Highlights

  • The process of nonsense-mediated decay (NMD) subjects mRNAs with premature termination codons (PTCs) to rapid decay

  • How does the cell discriminate aberrant mRNAs from those that are normal? Here we present evidence that in human cells, the targeting of an mRNA to nonsense-mediated mRNA decay depends on a competition between proteins associated with the mRNA 39 UTR that stimulate or antagonize mRNA decay

  • Our observations suggest that the competition between these proteins, and probably other unknown proteins with similar activities, determines whether a key protein complex in the pathway, the Upf complex, is recruited to the mRNA upon translation termination, which leads to mRNA decay

Read more

Summary

Introduction

The process of nonsense-mediated decay (NMD) subjects mRNAs with premature termination codons (PTCs) to rapid decay. This helps rid the cell of aberrant mRNAs that have acquired PTCs through mutation or faulty processing [1,2,3]. The NMD pathway employs a set of factors that are conserved amongst eukaryotes. Central to the NMD pathway is the Upf complex, which consists of the proteins Upf, Upf, and Upf3 [1,2,3]. The Upf complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC [1,2,3]. The Smg proteins, which are conserved in metazoans, regulate Upf function by phosphorylation and dephosphorylation [2,3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call