Abstract
Two types of images are produced by Earth observation satellites, each having complementing spatial andspectral characteristics. Pan-sharpening (PS) is based on remote sensing and image fusion approach thatproduces a high spatial resolution multi-spectral image by merging spectral information from a low spatialresolution multispectral (MS) image with intrinsic spatial details from a high spatial resolution panchromatic(PAN) image. Traditional pan-sharpening methods continue to seek for a fused image that contains thenecessary spatial and spectral information. This work proposes a pan-sharpening method based on a recentinvention, convolutional sparse representation (CSR). Geometric structural characteristics are extracted fromthe PAN image using a CSR-based filtering procedure. The challenge of learning filters, convolutional basispursuit denoising (CBPDN), is handled using a modified dictionary learning method based on the concept ofAlternating Direction Method of Multipliers (ADMM). The retrieved details are put into MS bands usingapplicable weighting coefficients. Because the proposed fusion model avoids the standard patch-basedmethod, spatial and structural features are preserved while spectral quality is maintained. The spectraldistortion index SAM and the spatial measure ERGAS improve by 4.4 and 6.2 percent, respectively, whencompared to SR-based techniques. The computational complexity is reduced by 200 seconds when compared
 to the most recent SR-based fusion technique. The proposed method's efficacy is demonstrated by reduced-scale and full-scale experimental findings utilising the QuickBird and GeoEye-1 datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.