Abstract

AbstractSensorless control of permanent magnet synchronous motor (PMSM) can increase the reliability of electric actuators of more electrical aircraft. Numerical online parameter estimation method will enhance the performance for sensorless control methods based on sliding mode observer (SMO). However, numerical online parameter identification methods typically assume zero rotor position estimation error to ensure full rank of the identification equation set. This assumption actually leads to errors in parameter identification, resulting in steady‐state errors in rotor position estimation. This paper focuses on a compensation method for PMSM online parameter identification that takes into account rotor position estimation error. This method is used for sensorless control based on SMO, using model reference adaptive systems for online parameter identification, and no additional parameter adjustment required. Validation is conducted on a PMSM experimental platform with maximum load of 15kW. The experimental results of 1000 r/min steady state operation proved the effectiveness of the method, and the dynamic experiments with 5 and 15kW loads proved that the method has no significant adverse effect on the system dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.