Abstract
This work investigated and compared the physicochemical characteristics, and antioxidant and antihyperglycemic properties in vitro of polysaccharides from a single banana flower variety (BFPs) extracted by different methods. BFPs extracted using hot water (HWE), acidic (CAE), alkaline (AAE), enzymatic (EAE), ultrasonic (UAE) and hot water-alkaline (HAE) methods showed different chemical composition, monosaccharide composition, molecular weight, chain conformation and surface morphology, but similar infrared spectra characteristic, main glycosidic residues, crystalline internal and thermal stability, suggesting that six methods have diverse impacts on the degradation of BFPs without changing the main structure. Then, among six BFPs, the stronger antioxidant activity in vitro was found in BFP extracted by HAE, which was attributed to its maximum uronic acid content (21.67 %) and phenolic content (0.73 %), and moderate molecular weight (158.48 kDa). The highest arabinose and guluronic acid contents (18.59 % and 1.31 % in molar ratios, respectively) and the lowest uronic acid content (14.30 %) in BFP extracted by HWE contributed to its better α-glucosidase inhibitory activity in vitro (66.55 %). The data offered theoretical evidence for choosing suitable extraction methods to acquire BFPs with targeted biological activities for applications, in which HAE and HWE could serve as beneficial methods for preparing antioxidant BFP and antihyperglycemic BFP, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.