Abstract
Soil moisture plays a vital role in land surface energy and the water cycle. Microwave remote sensing is widely used because of the physically based relationship between the land surface emission observed and soil moisture. However, the application of retrieved soil moisture data is restricted by its coarse spatial resolution. To overcome this weakness, downscaling methods should be developed to disaggregate coarse resolution microwave soil moisture data to fine resolution. The traditional method is the microwave-optical/IR synergistic approach, in which land surface temperature, vegetation index, and surface albedo are key parameters. Five purely empirical methods based on the triangle feature are selected in this study. To evaluate their performance on downscaling microwave soil moisture, these methods are applied to the Zoige Plateau in China using the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Land Parameter Retrieval Model (LPRM) soil moisture product and Moderate Resolution Imaging Spectroradiometer (MODIS) optical/IR products. The coarse-resolution AMSR-E LPRM soil moisture data are disaggregated into the high resolution of the MODIS product, and the surface soil moisture measurements of the Maqu soil moisture observation network located in the plateau are used to validate the downscaling results. Results show that (1) the relationship models used in these methods can generally capture the variation in soil moisture, with R2 around 0.6, but have a relatively high uncertainty under conditions of high soil moisture; (2) the methods can provide high-resolution soil moisture distribution, but the downscaled soil moisture presents a low level correlation with field measurements at different spatial and temporal scales. This comparative study provides insight into the performance of popular purely empirical downscaling methods on enhancing the spatial resolution of soil moisture on the Tibetan Plateau. Although synergistic methods can improve the spatial resolution of AMSR-E soil moisture data, additional studies are needed to exclude the uncertainty from AMSR-E soil moisture estimation, the low sensitivity of the relationship model under high soil moisture, and the spatial representativeness difference between coarse pixels and point measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.