Abstract

Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys both exhibit the nanocrystalline and amorphous structure. The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun alloy. More than that, the as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one, which are 549.8 and 560.9 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property to the as-spun one. On the basis of the time needed by desorbing hydrogen of 3 wt% H2, for the as-milled alloy, it needs 1106, 456, 343, and 180 s corresponding to hydrogen desorption temperatures of 593, 613, 633, and 653 K. However, for the as-spun alloy, the time needed is greater than 2928, 842, 356, and 197 s corresponding to the same temperatures. Hydrogen desorption activation energies of as-milled and as-spun alloys are 98.01 and 105.49 kJ/mol, respectively, which is responsible for that the as-milled alloy possesses a much faster dehydriding rate. By means of the measurement of pressure–composition–temperature (P–C–T) curves, the dehydrogenation enthalpy change of the alloys prepared by MS (ΔH de(MS)) and BM (ΔH de(BM)) is 81.84 and 79.46 kJ/mol, respectively, viz. ΔH de(MS) > ΔH de(BM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call