Abstract

Quasi-static tensile and stress relaxation experiments were performed on several cloth-based and segmented elastomeric tapes, and the results were analyzed using viscoelastic models. The cloth tape modulus of elasticity was ∼340 MPa, while those of the kinesio tapes ranged from ∼15 to 20 MPa. The cloth tapes was also stronger and more brittle. Viscoelastic modeling of the stress relaxation behavior was done using a Zener model for the cloth tapes and a 5-element model for the kinesio tapes. The cloth tape relaxed by ∼20%, while the kinesio tapes relaxed by ∼40% of the applied maximum stress in approximately 300-s as demonstrated by viscoelastic modeling and constant strain experiments. The overall amount of long-term compressive force delivered by kinesio tapes might be inadequate for some applications, but they are more forgiving in how they are deployed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call