Abstract

In a Markovian framework, we consider the problem of finding the minimal initial value of a controlled process allowing to reach a stochastic target with a given level of expected loss. This question arises typically in approximate hedging problems. The solution to this problem has been characterised by Bouchard, Elie and Touzi in [1] and is known to solve an Hamilton-Jacobi-Bellman PDE with discontinuous operator. In this paper, we prove a comparison theorem for the corresponding PDE by showing first that it can be rewritten using a continuous operator, in some cases. As an application, we then study the quantile hedging price of Bermudan options in the non-linear case, pursuing the study initiated in [2]. [1] Bruno Bouchard, Romuald Elie, and Nizar Touzi. Stochastic target problems with controlled loss. SIAM Journal on Control and Optimization, 48(5):3123-3150,2009. [2] Bruno Bouchard, Romuald Elie, Antony R\'eveillac, et al. Bsdes with weak terminal condition. The Annals of Probability, 43(2):572-604,2015.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.