Abstract

Professionals and students alike create high-performance Remotely Operated Vehicles (ROV)s to complete a multitude of tasks underwater. The student ROV competition created by Marine Advanced Technology Education (MATE) simulates the tasks faced by the modern professional underwater robotics industry. Students often design their ROVs with techniques used by the professional underwater robotics industry. Unlike professionals, students do not have many resources comparing manufacturable ROV components that fit within their design restrictions. Without information about components that they choose to use on their ROVs, students might miss an opportunity to implement a better alternative technology. Such is the case with older Shaft Sealed Housings (SSH) and less common Magnetically Coupled Housings (MCH). In this paper, essential aspects of both alternative designs for waterproof motor housings are tested to determine overall performance. The waterproofness of each housing is tested experimentally over long periods of time in an environment simulating the most extreme depths experienced at the MATE ROV Competition. Maximum static torque is measured on a torque sensor. Cost and manufacturability of each housing are recorded in tables. Ultimately, student robotics teams are left to determine which motor housing best fits their design requirements, based on the data discovered and presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.