Abstract

Objective. The objective of this study was to compare the occupant and dummy kinematics in a low-speed lateral environment with and without shoulder belt slack. Methods. A buck of a small European car was mounted on a side impact sled. The parameters evaluated were pulses, sitting location, and belt slack. A total of 24 tests were carried out. Three 50th-percentile male volunteers and one Hybrid III 50th-percentile male were tested. The pulses consisted of Pulse 1:+/- 0.7 g's pulse and Pulse 2: a -0.9 g pulse to simulate low-speed pre-roll/side events. Both pulses had a duration of 500 msec. Results. The peak lateral head excursion was higher in the far-side occupants than in the near-side occupants. Furthermore, for the far-side volunteers, lateral head displacements were lower in the no-slack condition than in the slack condition, at 388 ± 64 mm and 455 ± 84 mm respectively for Pulse 1 and at 138 ± 2 mm and 207 ± 70 mm for Pulse 2. The timing required to reach peak lateral displacement was higher in Pulse 1 than in Pulse 2. In comparison to the volunteers, the Hybrid III dummy lateral motion was lower. The peak lateral displacement in Pulse 1 was 231 mm with slack and 194 mm without and 98 mm and 107 mm for Pulse 2, respectively. Conclusions. The results obtained in this study indicate that removing seatbelt slack would be more beneficial for far-sided occupants than near-sided. They also point to the lack of biofidelity of the Hybrid III dummy in low g lateral pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call