Abstract

Transposon-insertion mutants with vir − Ti plasmids were characterized and then used in complementation experiments. One of the mutants (LBA 1517) had a mutation in a newly discovered vir locus called virF. The virF mutation led to a strongly diminished virulence on tomato and tobacco, but not on certain other plant species. Also a mutant (LBA 1505) was isolated with a mutation somewhere in the bacterial genome but outside the octopine Ti plasmid that caused a restriction in host range for tumor induction. Introduction of a nopaline Ti plasmid or an Ri plasmid into LBA 1505 did not restore normal virulence, showing that the vir gene affected in LBA 1505 determines a factor which is essential for normal tumor induction both by different types of Ti plasmids and by the Ri plasmid. The introduction of R primes containing part or all of the octopine Ti plasmid virulence region led to a restoration of virulence in strains with a vir − nopaline Ti plasmid. Also the transfer of an Ri plasmid to a large number of different vir − octopine or nopaline Ti plasmid mutants rendered these strains virulent. These results indicate that the octopine Ti plasmid, the nopaline Ti plasmid, and the Ri plasmid each have a similar virulence system which can mediate the transfer of T-DNA to plant cells from different types of Ti or Ri plasmids. In complementation experiments between vir − octopine Ti plasmid mutations and vir − nopaline Ti plasmid mutations it was found that equivalent functions are determined by the areas of DNA homology in the virulence regions of these two types of Ti plasmids. The previously defined octopine Ti plasmid virC locus appeared to consist of two different loci. One of these loci was found to be in a region of the octopine Ti plasmid which does not share DNA homology with the nopaline Ti plasmid, and was therefore called virO (octopine Ti plasmid specific). For the other locus the name virC was retained. Whereas mutations in the virC locus were avirulent on all plant species tested, mutations in virO were avirulent on tomato and pea, but virulent on sunflower and Nicotiana rustica. VirO − mutants produced rooty tumors on Kalanchoë tubiflora.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call