Abstract

Technical devices can enhance safety by warning people of unrecognized obstacles, particularly in traffic, wilderness, and industrial settings. This study aims to identify the most effective vibrotactile stimuli for localization tasks by developing and evaluating various types of vibrotactile alerts presented through a tactile vest with visual patterns. The study design involved comparing the time and consistency of interpreting visual stimuli and subsequent tactile stimuli. The tactile stimuli included: a ’point’ vibration on the left or right side of the back, a ’column’ pattern of five vibrations on one side of the back, and a ’wave’ pattern of vibrations running along the back from left to right or vice versa. The results indicated that reaction times to visual stimuli were significantly shorter than to vibration stimuli, suggesting that visual stimuli are suitable for alert systems with low cognitive load. The ’point’ and ’column’ patterns were recognized significantly faster and more clearly than the’wave’ pattern. Consequently, the haptic vest was classified as a potentially effective low cognitive load device in localization performance. The findings could inform the design of early warning systems for obstacle detection in real traffic situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.