Abstract
Clinical studies often deal with datasets with numerous variables. As a result of the similarities between the variables, we frequently observe the presence of multicollinearity in the data. This study aimed to apply different data reduction strategies to sleep study variables in multiple sclerosis (MS) patients. The main objective was to use various data reduction strategies to explain a subjective measure of sleep quality (Pittsburgh Sleep Quality Index: PSQI) by the objective measures of sleep quality obtained during complete in-laboratory overnight polysomnography. Overall, we found that few objective measures of sleep quality were important in explaining the subjective PSQI, based on the results of various well-accepted statistical methods. Total sleep time was found to be the most important feature of objective sleep quality for explaining subjective sleep quality among all other investigated objective sleep quality variables in most of the approaches investigated in this study. The LASSO method for estimation worked best in terms of interpretability among all the approaches considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.