Abstract
Spark assisted compression ignition (SACI) is a combustion mode that may offer significant efficiency improvements compared to conventional spark-ignited combustion systems. Unfortunately, SACI is constrained to a relatively narrow range of dilution levels and top dead center temperatures. Both positive valve overlap (PVO) and negative valve overlap (NVO) strategies may be utilized to attain these conditions at low and intermediate engine loads. The current work compares 1D thermodynamic simulations of PVO valving strategies and a baseline NVO strategy in a downsized boosted automotive engine with variable valve timing capability. As future downsized boosted engines may employ multiple combustion modes, the goal of this work is the definition of valving strategies appropriate for SACI combustion at low to moderate loads and spark ignition (SI) combustion at moderate to high loads for an engine with fixed camshaft profiles. PVO durations, valve opening timings, and peak lifts are investigated at low to moderate loads and are compared to a baseline NVO configuration in order to assess valving strategies appropriate for multimode combustion operation. A valvetrain kinematic model is used to translate the desired valve lift profiles into camshaft profiles while a kinematic analysis is used to calculate piston to valve clearances and to define the practical limits of the PVO strategies. The NVO and PVO strategies are also compared to throttled SI operation at part load to assess the overall efficiency benefit of operating under the thermodynamic conditions of the SACI combustion regime. While the results of this study are engine specific, there are several camshaft profiles that are appropriate for the use of PVO rebreathing type valve events. For the range of PVO valve events examined and taking into consideration piston to valve interference, the use of high exhaust and low intake lifts with early exhaust valve opening timing and long PVO durations enables high levels of internal exhaust gas recirculation (EGR) with relatively low pumping losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.