Abstract

Scheduling parallel tasks in multi-cluster grid can be seen as two interdependent problems: cluster allocation and scheduling parallel task on the allocated cluster. In this paper both rigid and moldable parallel tasks are considered. We propose a theoretical model of utility-oriented parallel task scheduling in multi-cluster grid with advance reservations. On the basis of the model we present an approximation algorithm, a repair strategy based genetic algorithm and greedy heuristics MaxMax, T-Sufferage and R-Sufferage to solve the two interdependent problems. We compare the performance of these algorithms in aspect of utility optimality and timing results. Simulation results show on average the (1+?)-approximation algorithm achieves the best trade-off between utility optimality and timing. Genetic algorithm could achieve better utility than greedy heuristics and approximate algorithm at expensive time cost. Greedy heuristics do not perform equally well when adapted to different utility functions while the approximation algorithm shows its intrinsic stable performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.