Abstract

Abstract Recently, several potential harm reduction strategies, such as reduction in the number of cigarettes smoked and the use of modified cigarette products, have been discussed as possible means by which to reduce tobacco-related disease. To assess any potential reduction in harm by either of these approaches requires an accurate assessment of tobacco toxin exposure. We have recently completed a cigarette reduction study in which smokers were required to reduce the number of cigarettes smoked by 75%. This reduction took place over a 6-week period. We report here the comparison of urinary concentrations of tobacco alkaloid and tobacco carcinogen biomarkers in a subset of these same smokers during a 7-week period prior to any reduction in cigarette consumption. Urine samples were collected at four time points and analyzed for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and its glucuronide, 1-hydroxypyrene, anatabine, free nicotine, total nicotine (free plus glucuronidated), free cotinine, total cotinine (free plus glucuronidated), and total trans-3′-hydroxycotinine (free plus glucuronidated). Anatabine is a minor alkaloid that may be useful in assessing tobacco exposure in individuals using nicotine replacement therapies. Urinary anatabine levels were well correlated (P < 0.0001) with both free and total nicotine (r = 0.753 and 0.773, respectively). Anatabine levels were also correlated with free cotinine (r = 0.465; P < 0.001), total cotinine (r = 0.514; P < 0.001), and total NNAL (r = 0.633; P < 0.001). These data support the role of anatabine as a biomarker of tobacco exposure. 1-Hydroxypyrene is a biomarker of polycyclic aromatic hydrocarbon exposure, but unlike NNAL it is not tobacco specific. Whereas urinary concentrations of 1-hydroxypyrene were consistent across the four visits, the levels were not correlated with NNAL, anatabine, nicotine, or any nicotine metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.