Abstract
Clean and safe water is vital for our lives and public health. In recent decades, population growth, agriculture, industries, and climate change have worsened freshwater resource depletion and clean water pollution. Several studies have focused on water pollutions risk simulation and prediction in the presence of pollution hotspots. However, the increase and complexity of big data caused by uncertain water quality parameters led to a new efficient algorithm to trace the most accurate pollution hotspots. Therefore, this study proposes to offer different algorithms and comparative studies using Machine Learning (ML) algorithms. Ten different most widely used algorithms, including unsupervised and supervised ML, will be employed to categorize the pollution hotspots for the Terengganu River. Besides, we also validate algorithms’ accuracies by improving and changing each parameter in ML algorithms. Our results list all the accurate and efficient ML algorithms for the classification of river pollutions. These results help to facilitate river prediction using efficient and accurate algorithms in various water quality scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.