Abstract
Lactose in cheese whey wastewater (CWW) makes it difficult to degrade under normal conditions. The effect of ultra-sonication (US), ozonation and enzymatic hydrolysis on increasing the bioavailability of organic matter in CWW and biogas production were evaluated. The pre-treatment conditions were: specific energy input varied from 2130 to 8773KJ/KgTS for a sonication time of 4.5–18.5 min, Ozone (O3) dosages ranging from 0.03 to 0.045gO3/gTS were applied for 4–16 min, pH (3.8–7.1), temperature (35°C–55°C), enzyme dosage (0.18–0.52%), was operated from 7.75 to 53 min for enzymatic hydrolysis by β-galactosidase. The results of the US reported a maximum sCOD solubilisation of 77.15% after 18.5 min of operation, while the corresponding values for ozonation and enzymatic methods were 64.8% at 16 min and 54.79%, respectively. The organic matter degradation rates evaluated in terms of protein and lactose hydrolysis were 68.78%,46.03%; 47.83%,16.15% and 54.22%,86.2%respectively, for US, ozonation and enzymatic methods. The cumulative methane yield for sonicated, ozonised and enzymatically hydrolysed samples were 412.4 ml/g VS, 361.2 ml/g VS and 432.3mlCH4/gVS, respectively. Regardless of the lower COD solubilisation rates attained, enzymatic pre-treatment showed maximum methane generation compared to US and ozonation. This could be attributable to the increased activity of β-galactosidase in hydrolysing whey lactose. The energy calculations revealed that the pre-conditioning of organic-rich CWW with enzymatic hydrolysis is more effective and efficient, yielding a net energy gain (gross output energy-input energy) of 9166.7 KJ and an energy factor (ratio of output to input energy) of 6.67. The modified Gompertz model well simulated all experimental values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.