Abstract

SUMMARY A simple system capable of wheel shimmy is analysed in three different ways and the results are compared. The tyre in each case is taken to be representable by a “taut string”, and the three ways involve (a) developing a digital tyre simulation which operates sequentially with a digital simulation of the mechanical system, (b) representing the tyre responses by linear constant coefficient differential equations derived empirically to match the string responses, and (c) as in (b) but employing fundamentally derived equations which approximate the exact string responses. The approximations are shown to give good results at reduced frequencies typical of the wheel shimmy phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.