Abstract

Two-hybrid systems are one of the most popular, preferred, cost effective, and scalable in vivo genetic approaches for screening protein-protein interactions. A number of variants of yeast and bacterial two-hybrid systems exist, rendering them ideal for modern, flexible proteomics-driven studies. For mapping protein interactions at genome scales (that is, constructing an interactome), the yeast two-hybrid system has been extensively tested and is preferred over bacterial two-hybrid systems, given that users have created more resources such as a variety of vectors and other modifications. Each system has its own advantages and limitations and thus needs to be compared directly. For instance, the bacterial two-hybrid method seems a better fit than the yeast two-hybrid system to screen membrane-associated proteins. In this chapter, we provide detailed protocols for yeast and bacterial two-hybrid systems as well as a comparison of outcomes for each approach using our own and published data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call