Abstract
A full-length sense Antirrhinum majus dihydroflavonol reductase ( DFR) sequence was introduced into birdsfoot trefoil ( Lotus corniculatus L.) in experiments aimed at modifying condensed tannin content and polymer hydroxylation in a predictable manner. Analysis of transgenic plants indicated lines that showed enhanced tannin content in leaf and stem tissues. In contrast to previous data from root cultures, levels of propelargonidin units were not markedly elevated in lines with enhanced tannin content. RT-PCR analysis of four selected lines indicated a correlation between enhanced tannin content and expression of the introduced DFR transgene. Using a contrasting approach we introduced a flavonoid 3′5′ hydroxylase ( F3′5′ H) sequence derived from Eustoma grandiflorum into Lotus root cultures. Expression of the transgene was associated with increased levels of condensed tannins and in this case there was also no alteration in polymer hydroxylation. These results suggest that additional mechanisms may exist that control the hydroxylation state of condensed tannins in this model species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.