Abstract

The problem of fitting continuous piecewise linear (PWL) functions to discrete data has applications in pattern recognition and engineering, amongst many other fields. To find an optimal PWL function, the positioning of the breakpoints connecting adjacent linear segments must not be constrained and should be allowed to be placed freely. Although the univariate PWL fitting problem has often been approached from a global optimisation perspective, recently, two mixed-integer linear programming approaches have been presented that solve for optimal PWL functions. In this paper, we compare the two approaches: the first was presented by Rebennack and Krasko [Rebennack S, Krasko V (2020) Piecewise linear function fitting via mixed-integer linear programming. INFORMS J. Comput. 32(2):507–530] and the second by Kong and Maravelias [Kong L, Maravelias CT (2020) On the derivation of continuous piecewise linear approximating functions. INFORMS J. Comput. 32(3):531–546]. Both formulations are similar in that they use binary variables and logical implications modelled by big-[Formula: see text] constructs to ensure the continuity of the PWL function, yet the former model uses fewer binary variables. We present experimental results comparing the time taken to find optimal PWL functions with differing numbers of breakpoints across 10 data sets for three different objective functions. Although neither of the two formulations is superior on all data sets, the presented computational results suggest that the formulation presented by Rebennack and Krasko is faster. This might be explained by the fact that it contains fewer complicating binary variables and sparser constraints. Summary of Contribution: This paper presents a comparison of the mixed-integer linear programming models presented in two recent studies published in the INFORMS Journal on Computing. Because of the similarity of the formulations of the two models, it is not clear which one is preferable. We present a detailed comparison of the two formulations, including a series of comparative experimental results across 10 data sets that appeared across both papers. We hope that our results will allow readers to take an objective view as to which implementation they should use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.