Abstract

Riverine fish are particularly vulnerable to chemical exposure – rivers receive chemicals of anthropogenic origin from a variety of sources, one of the most significant being the chemically complex effluents discharged by wastewater treatment works (WWTWs). The extent to which non-reproductive components of the endocrine system in fish may be vulnerable to interference by contaminants associated with WWTW effluent is not well understood, but a significant body of evidence does suggest that contaminants present in the aquatic environment may interfere with the normal function of the neuroendocrine stress axis in fish. Field investigations of stress axis function in free-living populations of fish by measurement of hormone concentrations in blood can be confounded by the remoteness of sampling locations and the size of target species. Two methods for assessing stress axis reactivity in situations where blood samples are unavailable were compared in three-spined sticklebacks in relation to their exposure to WWTWs effluent. Sticklebacks were sampled in two successive years at fifteen sites in north-west England impacted by WWTW effluent and the response of each fish to the combined stressor of capture and a brief period of confinement was evaluated using both whole-body immunoreactive cortisol concentrations (WBIC) and the rate of release of cortisol to water (CRTW). A positive relationship between the magnitude of stress-induced CRTW in sticklebacks of both sexes and WWTW effluent concentration at site of capture was observed in both years. However, the relationship between stress-induced WBIC and WWTW effluent concentration was not consistent. These results suggest that components of WWTW effluent can modulate the magnitude of the neuroendocrine stress response in sticklebacks, and by inference in other fish species, but they raise questions about the measurement and interpretation of stress axis responses in fish via endpoints other than blood hormone concentrations. Possible factors underlying the disparity between the CRTW and WBIC results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.