Abstract
BackgroundThe experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite.ResultsThe genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells.ConclusionThe transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells.
Highlights
The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania
Our analysis revealed that the transcriptional profile of uninfected C57BL/6 macrophages was markedly different from that of CBA macrophages
We found that C57BL/6 macrophages express higher levels of genes involved in the host immune inflammatory response and apoptosis, as well as others that encode for phagocytic receptors that recognize pathogens and apoptotic cells
Summary
The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. The cutaneous leishmaniasis murine model has been widely used to characterize the immune response. Some Leishmania species, such as L. amazonensis, can survive and proliferate inside macrophages by modulating host cell killing mechanisms, regardless of microbicidal molecule production [3]. The surviving promastigotes differentiate into amastigotes and multiply within parasitophorous vacuoles [18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.