Abstract

In this article we analyze by modeling two possible mechanisms for magnetization switching using spin orbit torques, which have been reported to cause field-free deterministic switching in experiments. Here we compare the field-free magnetization switching due to a tilt of the anisotropy direction against the use of an antiferromagnetic bias field. Simple results obtained analytically show that a bias field not only causes the magnetization reversal but also reduces the corresponding energy barrier. The critical current required for magnetization switching is analyzed on the basis of a macrospin model. It is shown that although the field-free deterministic switching caused by a tilt of the anisotropy is more robust than the bias field in the development of memory elements, a compromise between requirements has to be adopted when selecting the parameters for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.