Abstract

Single-cell RNA sequencing (scRNA-seq) technique has enabled detailed analysis of gene expression at the single cell level, enhancing the understanding of subtle mechanisms that underly pathologies and drug resistance. To derive such biological meaning from sequencing data in oncology, some critical processing must be performed, including identification of the tumor cells by markers and algorithms that infer copy number variations (CNVs). We compared the performance of sciCNV, InferCNV, CopyKAT and SCEVAN tools that identify tumor cells by inferring CNVs from scRNA-seq data. Sequencing data from Pancreatic Ductal Adenocarcinoma (PDAC) patients, adjacent and healthy tissues were analyzed, and the predicted tumor cells were compared to those identified by well-assessed PDAC markers. Results from InferCNV, CopyKAT and SCEVAN overlapped by less than 30% with InferCNV showing the highest sensitivity (0.72) and SCEVAN the highest specificity (0.75). We show that the predictions are highly dependent on the sample and the software used, and that they return so many false positives hence are of little use in verifying or filtering predictions made via tumor biomarkers. We highlight how critical this processing can be, warn against the blind use of these software and point out the great need for more reliable algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.