Abstract
AbstractThis paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.