Abstract
This paper presents a comparison of three spectral features for automatic phone recognition in sub-optimal environments. An exclusive study is carried out with a phone recognition system called phonetic engine (PE) developed in the Manipuri language. The Manipuri language is a scheduled Indian language being used as the official language in the State of Manipur. However, there is no standard database of the language so far. Therefore, a PE has been built for this language. Here phonetic transcriptions are done and then modeling of each phonetic unit is carried out using hidden Markov model (HMM). Speech feature extraction is a very important stage in the development of such a PE. An analysis of phone recognition accuracies of the PE due the three dominant spectral features: MFCC, PLP and LPCC have been studied here. It is found that PLP and MFCC outperform LPCC features under all circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.