Abstract

Nanomaterials represent a burgeoning field of technological innovation. With the onset of environmental release and commercial product exposure associated with nanomaterial manufacture and proliferation, the concomitant effects on human health remain unknown and demand further investigation. Agglomeration of nanomaterials in biologically relevant media used in in vitro methods further complicates dosing in toxicological study. Objective: to compare the effects of in vitro dispersion techniques on the physicochemical and toxicological dosimetry of TiO2 (<50nm) and NiO (<20nm) nanoparticles and some resulting toxicological endpoints to test for potential effects. Methods: three media were prepared for A549 and 16hbe14o cells with varying concentrations of TiO2 and NiO nanoparticles. Physicochemical effects were analyzed with dynamic light scattering, ICP-MS, SEM, and TEM. Toxicological effects were determined after stimulation of cells with nanoparticles for 4 and 24h followed by analysis of inflammatory and oxidative stress markers with ELISA and RT-PCR. Our data show that dispersion media differentially affect physicochemical properties and toxicological endpoints. Therefore, we conclude that in vitro nanotoxicology models that use re-suspension methods of exposure yield inconsistent and misleading biological results due to physicochemical variation of particle characteristics and transport processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.