Abstract

This paper presents microwave reflection coefficient measurements at 1.9 GHz and 4.0 GHz for a variety of typical smooth and rough exterior building surfaces. The measured test surfaces include walls composed of limestone blocks, glass, and brick. Reflection coefficients were measured by resolving individual reflected signal components temporally and spatially, using a spread-spectrum sliding correlation system with directional antennas. Measured reflection coefficients are compared to theoretical Fresnel reflection coefficients, applying Gaussian rough surface scattering corrections where applicable. Comparisons of theoretical calculations and measured test cases reveal that Fresnel reflection coefficients adequately predict the reflective properties of the glass and brick wall surfaces. The rough limestone block wall reflection measurements are shown to be bounded by the predictions using the Fresnel reflection coefficients for a smooth surface and the modified reflection coefficients using the Gaussian rough surface correction factors. A simple, but effective, reflection model for rough surfaces is proposed, which is in good agreement with propagation measurements at 1.9 GHz and 4 GHz for both vertical and horizontal antenna polarizations. These reflection coefficient models can be directly applied to the estimation of multipath signal strength in ray tracing algorithms for propagation prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.