Abstract

The contact angles of liquid silver-copper oxide/alumina and liquid copper-copper oxide/alumina systems were determined using the sessile drop method. Copper oxide (CuO) additions of 1.5–10.0 wt% were made. Temperatures of 970–1250 °C for the silver-based alloys and 1090–1300 °C for the copper-based alloys were studied. Minimum contact angles of 42±8 and 64±7 ° were obtained for the copper-copper oxide alloys and the silver-copper oxide alloys, respectively. The contact angle was approximately constant for the silver-copper oxide alloy within the immiscible liquid composition range. While the contact angles were higher for the silver-based alloys relative to the copper-based alloys, successful infiltration of a porous alumina sample was achieved at only 1050 °C for a Ag-10 wt% CuO alloy. Compression tests on infiltrated samples revealed similar compressive strengths for alumina samples infiltrated with silver-copper oxide alloys, silver-copper-copper oxide alloys and copper-copper oxide alloys. The compressive fracture strength for the infiltrated samples was an order of magnitude higher than the fracture strength of the porous alumina body without infiltration. Although silver-based alloys are more expensive than comparable copper-based alloys, in many applications the additional cost may be offset by lower processing or brazing temperatures, improved thermal and electrical conductivity, and improved toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.