Abstract

Abstract Considering the asymmetry of the low pressure turbine blade (LPT) wake at a low Reynolds number, the influence of asymmetric wakes which are similar to LPT wakes on the boundary layer of downstream blade rows in the near field is studied in the present paper, in order to increase wake flow prediction accuracy of the downstream blade without increasing the difficulty of the experiment or calculation load. Packb high-lift LPT airfoil was studied with CFX software. Following the analysis of the similarities between the wake generated by the cylinder bar and the triangle bar and the LPT blade wake in the near-field, the boundary layer flow characteristics on the suction surface under the different wakes were compared. In this research, it was found that the wakes of biased triangle bar shared more similarities with the LPT blade wake in the near field than the cylinder bar. Furthermore, the biased triangle bar wake was asymmetrical in terms of its centerline, and the separation bubble was suppressed while the calming effect was reduced after the wake-induced transition due to the asymmetry. And the time-averaged momentum thickness decreased by 7 % compared to the cylinder wake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call