Abstract

The high-throughput sequencing method known as RNA-Seq records the whole transcriptome of individual cells. Single-cell RNA sequencing, also known as scRNA-Seq, is widely utilized in the field of biomedical research and has resulted in the generation of huge quantities and types of data. The noise and artifacts that are present in the raw data require extensive cleaning before they can be used. When applied to applications for machine learning or pattern recognition, feature selection methods offer a method to reduce the amount of time spent on calculation while simultaneously improving predictions and offering a better knowledge of the data. The process of discovering biomarkers is analogous to feature selection methods used in machine learning and is especially helpful for applications in the medical field. An attempt is made by a feature selection algorithm to cut down on the total number of features by eliminating those that are unnecessary or redundant while retaining those that are the most helpful.We apply FS algorithms designed for scRNA-Seq to Alzheimer's disease, which is the most prevalent neurodegenerative disease in the western world and causes cognitive and behavioral impairment. AD is clinically and pathologically varied, and genetic studies imply a diversity of biological mechanisms and pathways. Over 20 new Alzheimer's disease susceptibility loci have been discovered through linkage, genome-wide association, and next-generation sequencing (Tosto G, Reitz C, Mol Cell Probes 30:397-403, 2016). In this study, we focus on the performance of three different approaches to marker gene selection methods and compare them using the support vector machine (SVM), k-nearest neighbors' algorithm (k-NN), and linear discriminant analysis (LDA), which are mainly supervised classification algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call