Abstract

Background Data Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal design characteristics for disc replacement constructs have not been determined. The current study seeks to quantify the differences in the shock absorption characteristics of three commonly used materials in cervical disc arthroplasty. Methods Three different nucleus materials, polyurethane (PU), polyethylene (PE) and a titanium-alloy (Ti) were tested in a humidity- and temperature-controlled chamber. Ten of each nucleus type underwent three separate mechanical testing protocols to measure 1) dynamic stiffness, 2) quasi-static stiffness, 3) energy absorption, and 4) energy dissipation. The results were compared using analysis of variance. Results PU had the lowest mean dynamic stiffness (435 ± 13 N/mm, P < .0001) and highest energy absorption (19.4 ± 0.1 N/mm, P < .0001) of all three nucleus materials tested. PU was found to have significantly higher energy dissipation (viscous damping ratio 0.017 ± 0,001, P < .0001) than the PE or TI nuclei. PU had the lowest quasi-static stiffness (598 ± 23 N/mm, P < .0001) of the nucleus materials tested. A biphasic response curve was observed for all of the PU nuclei tests. Conclusions Polyurethane absorbs and dissipates more energy and is less stiff than either polyethylene or titanium. Level of Evidence Basic Science/Biomechanical Study. Clinical Relevance This study characterizes important differences in biomechanical properties of materials that are currently being used for different cervical disc prostheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.