Abstract
Many aspects of cellular function or physiology can be used to indicate the level of damage resulting from the application of potentially deleterious agents such as drugs, solvents or even light. The dose required to reach a specific biological endpoint will necessarily depend on the characteristics of the damage induced by the agent. By using multiple biological probes, it is possible to get a more complete description of the type of damage induced. Photodamage was induced in rat basophilic leukemia cells by either 254-nm UVC light exposure or rose bengal photosensitization. Damage was measured by three quantitative assays employing fluorescent probes: calcein, to measure nonspecific esterase activity, propidium iodide (PI), to measure loss of plasma membrane integrity, rhodamine 123 (R123) to measure mitochondrial depolarization, and the incorporation of 5'-bromodeoxyuridine (BrdU), to measure the progress of cell replication. BrdU incorporation was found to be the most sensitive indicator for both forms of photodamage. For UVC photodamage, the BrdU assay was 330 times more sensitive than the other two assays. For rose bengal photosensitization, the BrdU assay was 48 or 62 times more sensitive than either the R123 or calcein/PI assays, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.