Abstract

BackgroundThe Kato-Katz thick smear (Kato-Katz) is the diagnostic method recommended for monitoring large-scale treatment programs implemented for the control of soil-transmitted helminths (STH) in public health, yet it is difficult to standardize. A promising alternative is the McMaster egg counting method (McMaster), commonly used in veterinary parasitology, but rarely so for the detection of STH in human stool.Methodology/Principal FindingsThe Kato-Katz and McMaster methods were compared for the detection of STH in 1,543 subjects resident in five countries across Africa, Asia and South America. The consistency of the performance of both methods in different trials, the validity of the fixed multiplication factor employed in the Kato-Katz method and the accuracy of these methods for estimating ‘true’ drug efficacies were assessed. The Kato-Katz method detected significantly more Ascaris lumbricoides infections (88.1% vs. 75.6%, p<0.001), whereas the difference in sensitivity between the two methods was non-significant for hookworm (78.3% vs. 72.4%) and Trichuris trichiura (82.6% vs. 80.3%). The sensitivity of the methods varied significantly across trials and magnitude of fecal egg counts (FEC). Quantitative comparison revealed a significant correlation (Rs >0.32) in FEC between both methods, and indicated no significant difference in FEC, except for A. lumbricoides, where the Kato-Katz resulted in significantly higher FEC (14,197 eggs per gram of stool (EPG) vs. 5,982 EPG). For the Kato-Katz, the fixed multiplication factor resulted in significantly higher FEC than the multiplication factor adjusted for mass of feces examined for A. lumbricoides (16,538 EPG vs. 15,396 EPG) and T. trichiura (1,490 EPG vs. 1,363 EPG), but not for hookworm. The McMaster provided more accurate efficacy results (absolute difference to ‘true’ drug efficacy: 1.7% vs. 4.5%).Conclusions/SignificanceThe McMaster is an alternative method for monitoring large-scale treatment programs. It is a robust (accurate multiplication factor) and accurate (reliable efficacy results) method, which can be easily standardized.

Highlights

  • Infection with soil-transmitted helminths (STH), including Ascaris lumbricoides, Trichuris trichiura and hookworm (Ancylostoma duodenale and Necator americanus) are of major importance for public health in tropical and subtropical countries [1,2]

  • In public health, the reduction in the number of eggs excreted in stools after drug administration is used to monitor the efficacy of drugs against parasitic worms

  • The Kato-Katz method resulted in significantly higher egg counts, but these were subject to lack of accuracy caused by intrinsic properties of this method

Read more

Summary

Introduction

Infection with soil-transmitted helminths (STH), including Ascaris lumbricoides, Trichuris trichiura and hookworm (Ancylostoma duodenale and Necator americanus) are of major importance for public health in tropical and subtropical countries [1,2]. Current approaches proposed for controlling STH infections entail periodic large-scale administration of anthelmintic drugs, targeting school-aged children [3,4]. Since such large-scale interventions are likely to intensify as more attention is given to these neglected tropical diseases [5], monitoring drug efficacy will assume increasing importance for assessment of drug efficacy [6] and for detection of the emergence of resistance [7,8]. The Kato-Katz thick smear (Kato-Katz) is the diagnostic method recommended for monitoring large-scale treatment programs implemented for the control of soil-transmitted helminths (STH) in public health, yet it is difficult to standardize. A promising alternative is the McMaster egg counting method (McMaster), commonly used in veterinary parasitology, but rarely so for the detection of STH in human stool

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call