Abstract
PurposeTo compare the RETeval sensor strip and Dawson-Trick-Litzkow (DTL) electrodes for recording the photopic negative response (PhNR) using a portable electroretinogram (ERG) device in eyes with and without glaucoma.MethodsTwenty-six control and 31 glaucoma or glaucoma-suspect participants were recruited. Photopic ERGs were recorded with sensor strip and DTL electrodes in random order using the LKC RETeval device. Stimuli consisted of brief, red flashes (1.7 cd.s/m2) on a blue background (photopic 10 cd/m2). The PhNR amplitude was measured from baseline to trough and also expressed as a ratio over the b-wave amplitude.ResultsThe sensor strip-recorded PhNR amplitude was significantly attenuated (mean ± standard deviation [SD], 4.8 ± 2.1 vs. 12.7 ± 4.8 μV, P < 0.0001), with lower signal-to-noise ratio (SNR; 5.5 ± 2.1 vs. 8.1 ± 3.9, P < 0.0001), and a trend toward a larger PhNR/b-wave ratio compared with DTL electrodes. The PhNR amplitude, implicit time and PhNR/b-wave ratio correlated with visual field mean light sensitivity, although this fell short of significance for the sensor strip recorded PhNR amplitude. The electrodes demonstrated similar intersession repeatability with a coefficient of repeatability of ±27% and ±28% for the DTL and sensor strip, respectively.ConclusionsSensor strip electrodes are a viable alternative for recording reproducible PhNRs, especially when values are normalized to the b-wave. However, DTL electrodes should be considered in cases of attenuated PhNR, or in elevated noise levels, due to its better signal-to-noise quality.Translational RelevanceSensor strip electrodes can simplify PhNR recordings in the clinic, potentially eliminating the need for an experienced operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.