Abstract

Abstract Research in the field of artificial intelligence systems has been exploring the use of artificial neural networks (ANN) as a framework within which many traffic and transport problems can be studied. One appeal of ANN is their use of pattern association and error correction to represent a problem. This contrasts with the random utility maximisation rule in discrete choice modelling. ANN enables a full set of human perceptions about a particular problem to be represented by artificial networks of neurons. A claim of ANN is that it can tackle the problem of travel demand forecasting and modelling as well if not better than the discrete choice approach. The use of such tools in studying individual traveller behaviour thus opens up an opportunity to consider the extent to which there are representation frameworks which complement or replace discrete choice methods. This paper explores the merits of neural networks by comparing the predictive capability of ANN and nested logit models in the context of commuter mode choice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.