Abstract

We focus on the development of signal processing algorithms that incorporate the underlying physics characteristic of the sensor and of the anticipated unexploded ordnance (UXO) target, in order to address the false alarm issue. In this paper, we describe several algorithms for discriminating targets from clutter that have been applied to data obtained with the multisensor towed array detection system (MTADS). This sensor suite includes both electromagnetic induction (EMI) and magnetometer sensors. We describe four signal processing techniques: a generalized likelihood ratio technique, a maximum likelihood estimation-based clustering algorithm, a probabilistic neural network, and a subtractive fuzzy clustering technique. These algorithms have been applied to the data measured by MTADS in a magnetically clean test pit and at a field demonstration. The results indicate that the application of advanced signal processing algorithms could provide up to a factor of two reduction in false alarm probability for the UXO detection problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call