Abstract
We focus on the development of signal processing algorithms that incorporate the underlying physics characteristic of the sensor and of the anticipated unexploded ordnance (UXO) target, in order to address the false alarm issue. In this paper, we describe several algorithms for discriminating targets from clutter that have been applied to data obtained with the multisensor towed array detection system (MTADS). This sensor suite includes both electromagnetic induction (EMI) and magnetometer sensors. We describe four signal processing techniques: a generalized likelihood ratio technique, a maximum likelihood estimation-based clustering algorithm, a probabilistic neural network, and a subtractive fuzzy clustering technique. These algorithms have been applied to the data measured by MTADS in a magnetically clean test pit and at a field demonstration. The results indicate that the application of advanced signal processing algorithms could provide up to a factor of two reduction in false alarm probability for the UXO detection problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.