Abstract
The lung is particularly susceptible to reperfusion injury, both experimentally and clinically after transplantation. The extracellular-type preservation solution Celsior, which has been predominantly studied in cardiac preservation, has components designed to prevent cell swelling, free radical injury, energy depletion, and calcium overload. Using an isolated blood-perfused rat lung model, we investigated whether Celsior would decrease preservation injury and improve lung function after cold ischemic storage and reperfusion compared to Euro-Collins (EC) and University of Wisconsin (UW) solutions. Lewis rat lungs were isolated, flushed with the respective cold preservation solution, and then stored at 4 degrees C for 6 or 12 hr. After ischemic storage, the lung block was suspended from a force transducer, ventilated with 100% O2, and reperfused for 90 min with fresh blood via a cannula in the pulmonary artery. Lung compliance, alveolar-arterial oxygen difference, and outflow oxygen tension were all measured. The capillary filtration coefficient (Kf), a sensitive measure of changes in microvascular permeability, was determined. For 6 hr of cold storage, lungs stored in Celsior had lower Kf values than those stored in EC, indicating decreased microvascular permeability. No other significant differences were noted between Celsior and EC or UW. For 12 hr of cold storage, Celsior provided increased oxygenation, decreased alveolar-arterial O2 differences, increased compliance, and decreased Kf values as compared to both EC and UW. Celsior provides better lung preservation than EC or UW as demonstrated by increased oxygenation, decreased capillary permeability, and improved lung compliance, particularly at 12-hr storage times. These results are highly relevant, inasmuch as EC and UW are the most common clinically used lung preservation solutions. Further studies of Celsior in experimental and clinical lung transplantation, as well as in other solid organs, are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.