Abstract

A pair of 20-year simulations by two different versions of MIROC (Model for Interdisciplinary Research on Climate) was examined by using a standardized set of Madden-Julian Oscillation (MJO) diagnostics. One of the major differences between version 4 (MIROC4) and version 5 (MIROC5) of MIROC is the cumulus parameterization scheme. MIROC4 uses a prognostic Arakawa-Schubert scheme, whereas MIROC5 uses the Chikira scheme. MIROC5 reproduced the MJO better than MIROC4: a stronger signal in the wavenumber-frequency diagram, a slower and more noticeable eastward movement in the lag-correlation plot, and a better phase relationship between outgoing longwave radiation and zonal winds.To investigate the impact of mid-tropospheric humidity on cumulus development in MIROC5, the atmosphere-only version of MIROC5 was used for a series of sensitivity runs, each with different entrainment parameter values. The entrainment parameter settings significantly influenced the simulated MJO. Large-scale cloud systems tended to move westward with smaller entrainment parameter values, accompanied by a pair of rotations with quasi-symmetry about the equator in the lower troposphere, whereas eastward movements were faster, with larger entrainment parameter values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.