Abstract

The effect of basis sets on the calculated transition energies for ethene, formaldehyde, acetone, and isobutene has been studied at the RPA, TDDFT, and EOM-CCSD theoretical levels. Polarization functions beyond the (d,p) level have little effect on the calculated energies. However, diffuse functions have a major effect on the calculated energies. Using 6-311(2+,2+)G(d,p) which has two sets of diffuse functions, EOM-CCSD gave very good agreement with the available experimental data in most cases. Another set of diffuse functions led to lower transition energies in a few cases. The RPA calculations for ethene are in fairly good agreement with the first 10 experimental transition energies, and TDDFT is less satisfactory. On the other hand, for formaldehyde and acetone, TDDFT gives fairly good agreement with experiment for the first states, and RPA is quite unsatisfactory. The use of global diffuse functions instead of additional atom-centered diffuse functions was examined. They proved to be quite satisfactory for the compounds in this investigation and serve to reduce the time required for the calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.