Abstract
Enzymatic deacylation of LPS markedly reduces its activity in the dermal Shwartzman reaction. Inasmuch as polymorphonuclear leukocytes (PMN) are involved in the genesis of tissue injury in Shwartzman reactions, we have investigated the effects of deacylated LPS (dLPS) on PMN. Compared to LPS, dLPS was ineffectual as a stimulus of both PMN adherence and release of secondary granule enzymes, and dLPS inhibited specific LPS-induced adherence. Neither LPS nor dLPS caused release of the primary granule enzymes, myeloperoxidase, and elastase. Unlike LPS, dLPS failed to prime PMN for superoxide release when a second stimulus (FMLP, 10(-6) M was given. The mechanism of the LPS induced increase in PMN adherence was investigated, and we found that LPS significantly increased the amount of the adhesive glycoprotein CD11b on the surface of the PMN. dLPS had no effect on CD11b expression. Our results suggest that enzymatic deacylation of LPS profoundly alters its ability to stimulate PMN and deacylation of LPS by inflammatory cells in vivo might be an important mechanism limiting the toxic effects of LPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.