Abstract

Abstract: Sampling-based path planners develop paths for robots to journey to their destinations. The two main types of sampling-based techniques are the probabilistic roadmap (PRM) and the Rapidly Exploring Random Tree (RRT). PRMs are multi-query methods that construct roadmaps to find routes, while RRTs are single-query techniques that grow search trees to find paths. This investigation evaluated the effectiveness of the PRM, the RRT, and the novel Hybrid RRT-PRM methods. This novel path planner was developed to improve the performance of the RRT and PRM techniques. It is a fusion of the RRT and PRM methods, and its goal is to reduce the path length. Experiments were conducted to evaluate the effectiveness of these path planners. The performance metrics included the path length, runtime, number of nodes in the path, number of nodes in the search tree or roadmap, and the number of iterations required to obtain the path. Results showed that the Hybrid RRT-PRM method was more effective than the PRM and RRT techniques because of the shorter path length. This new technique searched for a path in the convex hull region, which is a subset of the search area near to the start and end locations. The roadmap for the Hybrid RRT-PRM could also be re-used to find pathways for other sets of initial and final positions. Keywords: Path Planning, Sampling-based algorithms, search tree, roadmap, single-query planners, multi-query planners, Rapidly Exploring Random Tree (RRT), Probabilistic Roadmap (PRM), Hybrid RRT-PRM

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call