Abstract

It is well known that sensory receptive field properties are shaped by inhibitory processes. Given the physiological and perceptual distinctions among the different sensory modalities, it might be expected that the contribution of GABA-ergic inhibition to the process would vary from area to area, depending on the sensory modality represented. Furthermore, as receptive field properties become progressively more complex at higher cortical levels, differences in the inhibitory contributions to these computations would be reflected in differences in GABA-ergic neuronal distribution. These possibilities were examined in the cortices surrounding the cat Anterior Ectosylvian Sulcus (AES) which contains higher order visual (AEV), somatosensory (SIV) and auditory (Field AES) representations, and is located between the lower-level primary (AI) and secondary auditory (AII) and somatosensory (SII) areas. Using standard immunocytochemical and light-microscopic techniques, the distribution of GABA-ergic neurons (and their co-localized calcium-binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV)) was determined for each area. When normalized for differences in cortical thickness, the depth distribution of each of the immunopositive types was plotted. These data confirmed that there were striking differences in the distribution of GABA-, CB-, CR- and PV-positive neurons. However, the laminar organization for a given marker was remarkably similar for the different subregions, irrespective of modality or hierarchical level. These data indicate that, instead of underlying processing differences among different sensory and hierarchical representations, the distribution of GABA-ergic inhibitory neurons reveals common organizational features across sensory cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call