Abstract

ObjectivesTo investigate the impacts of the different three-dimensional CT (3DCT) scanning modes on the GTV delineation for solitary pulmonary lesion (SPL) based on four-dimensional CT (4DCT), and to evaluate the feasibility of using the spiral CT scan in CT simulation.Materials and methodsTwenty-one patients with SPL underwent axial CT scan, spiral CT scan and 4DCT simulation scan during free-breathing, respectively. The same clinical radiation oncologist delineated the gross tumor volume (GTV) under the same CT window setting. GTVA and GTVS were created from the axial and spiral images, respectively. ITVMIP was created from the maximum intensity projection (MIP) reconstructed 4D images. The target volumes and position between GTVA, GTVS and ITVMIP were compared. The matching index (MI) between GTVA and GTVS, and the correlation between MI and GTVS were evaluated.ResultsITVMIP was significantly larger than GTVA and GTVS (ps = 0.000). The ratios of ITVMIP to GTVA and GTVS were 1.57 ± 0.54 and 1.66 ± 0.61, respectively. There was no significant difference between GTVA and GTVS(p = 0.16). A comparison of the centroidal positions in x, y, and z directions for GTVA, GTVS and GTV4Dmip showed no significant difference (px = 0.17, py = 0.40, pz = 0.48). Additionally, there was no difference between distances from the centroidal positions of GTVA and GTVS to the origin of coordinates (p = 0.51). MI between GTVA and GTVS was 0.41 ± 0.24 (range 0–0.89), and it was positively correlated with the tumor volume (r = 0.64, p = 0.002).ConclusionThere was no impact on the volume or centroidal position of GTV by the axial scan or spiral scan in 3DCT simulation for SPL. MI between GTVA and GTVS was small. A positively correlation was found between MI and GTVS. Relative to axial scanning mode, spiral CT scan was more timesaving and more efficient, it was feasible in 3DCT simulation for SPL.

Highlights

  • The aim of radiation treatment is to increase the radiotherapy effects on the tumor while avoiding excessive toxicity [1,2]

  • ITVMIP was significantly larger than Gross tumor volume gained by axial scan (GTVA) and Gross tumor volume gained by spiral scan (GTVS)

  • There was no impact on the volume or centroidal position of gross tumor volume (GTV) by the axial scan or spiral scan in Three-dimensional CT (3DCT) simulation for solitary pulmonary lesion (SPL)

Read more

Summary

Introduction

The aim of radiation treatment is to increase the radiotherapy effects on the tumor while avoiding excessive toxicity [1,2]. Three-dimensional CT (3DCT) and four-dimensional CT (4DCT) simulation techniques are both in used, and 4DCT simulation is currently the leading simulation technology. The slow speed scanning mode could collect more respiratory motion information, so we usually adopted axial scanning mode for simulation during free-breathing [7]. Whether the axial scan and spiral scan that are usually adopted would influence the GTV of the lung tumor in motion during free-breathing was unclear. Basing on 4DCT technique, this study evaluates how the axial and spiral scanning modes affect the position, volume and spatial match relationships on the GTV delineation for the solitary pulmonary lesion (SPL) in 3DCT simulation

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.