Abstract

The Mossbauer effect hyperfine parameters and the results of the Fenske-Hall molecular orbit (mo) calculations have been used to study the electronic properties of trinuclear iron, tetranuclear iron butterfly, Fe-Co, and Fe-Cu carbonyl clusters. The more negative Fe charge and the larger Fe 4s population in an Fe(CO)4 fragment as compared with that in an Fe(CO)3 or an Fe(CO)2 fragment is a result of the CO ligands rather than the near-neighbor metals. The clusters which contain heterometals have more negative isomer shifts. The isomer shift correlated well with the sum of the Fe 4s orbital population and the Zeff these electrons experience. The mo wave functions and the atomic charges generally give a larger calculated ΔE Q than is observed, indicating the need to include Sternheimer factors in the calculation. The valence contribution dominates the EFG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call