Abstract
Eukaryotic cells require sterols to achieve normal structure and function of their plasma membranes, and deviations from normal sterol composition can perturb these features and compromise cellular and organism viability. The Smith–Lemli–Opitz syndrome (SLOS) is a hereditary metabolic disease involving cholesterol (CHOL) deficiency and abnormal accumulation of the CHOL precursor, 7-dehydrocholesterol (7DHC). In this study, the interactions of CHOL and the related sterols desmosterol (DES) and 7DHC with l-α-dipalmitoylphosphatidylcholine (DPPC) monolayers were compared. Pressure–area isotherms and fluorescence microscopy were used to study DPPC monolayers containing 0, 10, 20, or 30 mol% sterol. Similar behavior was noted for CHOL- and DES-containing DPPC monolayers with both techniques. However, while 7DHC gave isotherms similar to those obtained with the other sterols, microscopy indicated limited domain formation with DPPC, indicating that 7DHC packs somewhat differently in DPPC membranes compared to CHOL and DES. These results are discussed in relation to SLOS pathobiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.