Abstract

Metal processing at a Cu-Cd refinery at Prescot in N.W. England has led to severe contamination of the surrounding soils and vegetation, although Cu and Cd in bulk deposition declined dramatically between 1975 and 1990. Despite high spatial and temporal variability in metal deposition, mean Cd concentrations in annual tree rings of sycamore (Acer pseudoplatanus L.), lime (Tilia europaea L.) and beech (Fagus sylvatica L.) at Prescot were correlated with annual bulk Cd deposition. In contrast, mean Cd concentrations in ash (Fraxinus excelsior L.) were unrelated to Cd deposition and there was no significant relationship between mean Cu concentrations in tree rings and Cu deposition in any species. Mean Pb concentrations in sycamore, lime and beech at Prescot and the reference site also decreased over time. At Prescot however, Cd concentrations in tree rings formed in the mid 1990s were up to 10-fold higher than the reference site despite Cd deposition values during this period that were typical of levels expected for urban areas in the UK. The high Cd concentrations in wood during this period indicate that the majority of Cd in tree rings at Prescot is derived from soil, limiting the usefulness of dendrochemistry for monitoring temporal changes in metal deposition. It appears that trees are not simply passive recorders of metal deposition and other possibilities, in addition to decreasing atmospheric deposition, may explain the patterns of Cd and Pb found in sycamore, lime and beech. More research on the physiology of metal cycling in trees is required before dendrochemical techniques can be applied with confidence in environmental monitoring programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call