Abstract

The geometries, stabilities and electronic properties of vanadium-doped germanium clusters GenV0/+ (n=2-8) were systematically investigated by using density functional theory (DFT) at the PBE level and the 6-311+G(d) basis set. The results show that the geometries of lowest-energy structures of the cationic clusters are only significant different from those of the neutral at n = 6 or 7. The ground state of neutral clusters is a doublet, except Ge2V which is a quartet while that of cationic clusters is a triplet, except Ge8V+, which is a singlet. The average binding energy values generally increase with increasing cluster size. The results from average binding energies showed that it is more stable for the cationic than neutral clusters at the same size. Furthermore, the calculated values of fragmentation energy, second-order energy difference, HOMO-LUMO gap and adiabatic ionization potential suggest that the neutral clusters possess higher stability when n = 2, 5, 8 and the cations are more stable when n = 2, 3, 5 and 6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.